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Abstract 

BACKGROUND: Biological effects of extra-low-frequency (ELF) magnetic fields (MF) have 

lacked a credible mechanism of interaction between MFs and living material.  

OBJECTIVES: Examine the effect of  ELF-MFs on cancer cells. 

METHODS: Five cancer cell lines were exposed to ELF-MFs within the range of 0.025 to 5 µT, 

and the cells were examined for karyotype changes after 6 days. 

RESULTS: All cancer cells lines lost chromosomes from MF exposure, with a mostly flat dose-

response. Constant MF exposures for three weeks allow a rising return to the baseline, 

unperturbed karyotypes. From this point, small MF increases or decreases are again capable of 

inducing karyotype contractions. Our data suggests that the karyotype contractions are caused by 

MF interference with mitochondria’s ATP synthase (ATPS), compensated by the action of AMP-

activated protein kinase (AMPK). The effects of MFs are similar to those of the ATPS inhibitor 

oligomycin. They are amplified by metformin, an AMPK stimulator, and attenuated by resistin, 

an AMPK inhibitor. Over environmental MFs, karyotype contractions of various cancer cell lines 

show exceptionally wide and flat dose-responses, except for those of erythro-leukemia cells, 

which display a progressive rise from 0.025 to 0.4 µT.  

CONCLUSIONS:  The biological effects of MFs are connected to an alteration in the structure of 

water that impedes the flux of protons in ATPS channels. These results may be environmentally 

important, in view of the central roles played in human physiology by ATPS and AMPK, 

particularly in their links to diabetes, cancer and longevity. 

 

Keywords: Magnetic field; Extra-Low-Frequency; ATP Synthase; AMP-activated Protein 

Kinase; Chromosome Instability. 
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AMPK  Adenosine MonoPhosphate Activated Protein Kinase 
ATPS  Adenosine TriPhosphate Synthase 
ELF  Extra-Low-Frequency 
KC  Karyotype Contraction 
MF  Magnetic Field 

 

Introduction  

Since the 1979 Wertheimer and Leeper [1] article linking wire codes to childhood cancer, the 

relation between cancer and power-frequency magnetic fields (MFs) has been under 

investigation [2]. Population, in vivo and in vitro studies have failed to provide a clear link. The 

exception is childhood leukemia [3], leading the International Agency for Research on Cancer to 

attach the class 2B carcinogen designation to MFs in June 2001 [4].                                                                                     

 

It has been argued that environmental 60-Hz MFs, as non-ionizing radiation, and incapable of 

raising tissue temperatures, could not have significant impacts on cells. But effects on breast 

cancer cells MCF-7 were confirmed by a number of laboratories near 1.2 µT [5]. Many have also 

reported a diversity of effects above 2.5 µT, higher than common environmental exposures. 

These include lengthened mitotic cycle and depressed respiration [6] increased soft agar colony 

formation [7], inhibition of differentiation with increased cell proliferation [8], as well as DNA 

breaks with apoptosis and necrosis [9]. 

 

In the early days of ELF MF research, Semikhina at al [10; 11] documented by electrical 

dissipation factor ( RC, also known in electrical engineering as tg ) and optical measurements 

(the dimerization of dilute rhodamine 6G solutions) that alternating MFs in the range 25 nT- 879 

µT disrupt the arrangement of water molecules, particularly under high concentrations of 

hydrogen bonds and protons. The effects were absent above 40-50°C, as water structure 

changes.The maximum effect was detected at 156.2-Hz and 15.45 µT for 7°C pure water. 

Narrow resonances were observed, easily broadened by the presence of even small levels of 

impurities. The MF effects on water progressed over 5 hours, and dissipated over 2 hours after 

the field was turned off.  

Interestingly, when alternating MFs were kept below 25 nT, an influence of static MFs on water 

could be detected. Removing the static MF acted on water variables (dissipation factor and 

optical measurements) in a direction opposite to the application of ELF MFs larger than 25 nT. 

Thus, it seemed that elimination of both ELF and static MFs allowed water to ‘optimize’ its 

molecular arrangement. 
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These observations created ground to attempt an interpretation of  ELF MF health effects based 

on water structure alterations brought about by the MF itself, as opposed to magnetically-induced 

currents. We investigated this possibility by setting up baseline cancer cell lines maintained 

under power-frequency MFs lower than 4 nT, and also under anoxia. 

As 82 % of oxygen readings in solid tumours are less than 0.33 % [12], and stem cells are hosted 

in niches that are very low in oxygen [13], anoxia is a better simulation of the tumour 

environment than routinely used 21 % oxygen. Our cells are also hyperploid, displaying a range 

of chromosomes numbers larger than 46, as a result of the enhanced metabolism typical of 

cancer cells. The absence of oxygen reduces chromosome numbers to some extent, but not back 

to normal, and also narrows their range [14]. 

 

Metabolic restrictors, chemicals that impair oxygen metabolism, ATP synthesis or ATP use, can 

bring back chromosome numbers in cancer cell lines even closer to their original 46 than anoxia, 

an effect labelled karyotype contraction (KC). KC is a rapid and reversible loss of chromosomes 

resulting from metabolic restriction [14].  

A critical enzyme in ATP production is ATPS. The structure of ATPS is documented in detail 

[15] as a rotating motor-generator structure activated by the trickle of high-density protons from 

the inter-membrane space into the matrix of mitochondria. Proton diffusion along the 15 nm 

thick inter-membrane space does not limit their transit time of 1 to 2 µs [16]. Protons enter the 

Fo of ATPS along an entry half-channel made of four hydrophilic - helices, to reach a rotating 

helix. After rotation, protons flow out through a similar exit half-channel. The rotation is used by 

the F1 segment of ATPS to produce ATP [17].  

These hydrophilic channels [18] provide a high density of hydrogen bonds, while the 

mitochondrial inter-membrane space feeds ATPS a high-density of protons. The high-density 

protons (pH 1, [16]) are driven through the half-channels by a 180 kV/cm electric field [19] 

across the inner membrane [20]. 

 

In this study, we assess the ability of MFs at common environmental levels to induce KCs. 

 

Results 

Because of the controlled MFs and of anoxia, our reference K562 cultures are karyotypically and 

otherwise exceptionally stable. 75 % of the cells have just two chromosome numbers, 62 and 61, 

compared to a wider range under 21 % oxygen [14]. The stability of chromosome numbers in 

baseline anoxic K562 has been periodically confirmed  in our lab over 5 years. These cultures 

provide an extremely precise reference point, as shown in the narrow  baselines of Figs. 1, 2 TOP 

and 4. This is of great advantage in obtaining statistical significance in our data. Fig. 1 shows 
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little overlap between baseline and  exposed data, yielding small numbers in Student’s t-tests. In 

Fig. 2 TOP, the p-value between baseline and 0.025 µT is 0.00012. In Fig. 3, even when using 21 

% oxygen, the large number of karyotypes performed and the strong shifts in average 

chromosome numbers produced by MFs result in extremely small p-values (0.000006 for 

MCF7).  

Induced Currents 

Whether biological effects of power-frequency MFs relate to the MF itself, or to the currents 

induced in tissues by the fields, has been a perennial question. Many think that effects occur 

through potentials produced by magnetically induced currents blocked by the thin membranes, 

within or bordering living cells. Such currents and membrane potentials are familiar to 

conventional electrophysiology.  

In the results of Fig. 1, one aliquot of an anoxic K562 cell culture is placed in a vertical, and the 

second in a horizontal MF exposure system. At the same MF, the horizontal coil induces currents 

6 times larger because the exposed culture dish area is 34 x 34 mm for the horizontal coil, 

compared to 5.8 x 34 mm for the vertical coil. As KCs after 6-days at 1 µT come out similarly 

for both orientations (Fig. 1), we conclude that the effect on chromosome numbers are dependent 

on the MF itself. We assume direct MF, rather than induced current action on the basis that 

variations of current density by a factor of 6 do not affect KC. But this would also occur if 

induced currents had a flat dose-response, already saturated at the lower current. Further, direct 

MF action on KC does not preclude that other effects of MFs may depend on induced currents.  

 



5 

 

Fig. 1. Baseline anoxic K562 cells at less than 4 nT (60-Hz) with an average of 61.5 
chromosomes (horizontal line), and a very narrow distribution (at left) are simultaneously 
transferred for 6 days to 1 µT MFs applied either horizontally or vertically. Three 
independent 6-day assays show the resulting chromosome numbers. Box plots show median 
(solid), average (dotted), 25 and 75 % (box), 10 and 90 % limits (whiskers), and outside 
values (dots). 56 (Assay 1), 50 (Assay 2) and 51 (Assay 3) metaphases were karyotyped in 
each orientation. Inside the box plots are average chromosome losses. The Student’s t-test 
results quantify the probability that the horizontal and vertical results are identical. 

Dose-Response 

Fig. 2 TOP shows the chromosome number losses experienced by previously shielded anoxic 

K562 cells after 6-days in various MFs. Under any exposure, the narrow baseline expands, and 

there are substantial KCs.  

Three features are of importance. First, a no-effect-level lower than 25 nT. Second, a progression 

of KCs up to 0.4 µT. Third, the relatively flat dose-response between 0.1 and 1.5 µT.  

The graph spans time-averaged MFs representing domestic (0- 0.2 µT), commercial (0.07- 0.5 

µT) and occupational (0.1-1µT) environments [21]. 

Across Cell Lines 

Beyond K562, we investigated four more hyperploid cancer cell lines to determine the generality 

of  KC by MFs. Over two orders of MF magnitude, erythro-leukemia (HEL 92.1.7), breast 

(MCF7) and lung (NCI-H460) cancer cells lose between 8 and 13 chromosomes (Fig. 3). HEL, 

our second erythro-leukemia cell line, shows fewer losses at lower fields, similar to K562. Three 

of the four results reported in Fig. 3 were obtained under standard (21 % oxygen) culture 

conditions.  
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Fig. 2. TOP: K562 chromosome numbers as a function of 60-Hz Magnetic Flux Density. 6-
day assays with, in sequence, 65, 28, 50, 77, 46, 33, 65, 102, 56 and 50 metaphases. 2 to 6 
experiments at each MF. Approximate ranges for domestic, commercial and occupational 
exposures are shown.  
 
BOTTOM: pH differences between two cell medium aliquots, one exposed for 20 hours to 
<4 nT at 60-Hz, and the second to the MF density in the Figure. Medium is RPMI-1640 
with 10 % FBS. Isotherm measurements using Auto Read were made with the same probe, 
alternating between the two aliquots. 3 measurements for each aliquot, and 3 repeats at 
each MF density.  
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Fig. 3 AT LEFT. Average chromosome losses in erythro-leukemia, breast, lung and colon 
cancer cells as a function of 60-Hz Magnetic Flux Density. The chromonome number 
baseline (“0”) averages for < 4 nT cells at 60-Hz,  80 % range and metaphase number are: 
HEL: 66, 62-67, 32;  MCF7: 74, 61-75, 30;  NCI-H460: 57, 53-65, 30 and COLO 320DM: 
54, 49-61, 30. 6-day assays with, in sequence, 32, 22, 29, 32; 19, 22, 19, 21; 29, 22, 24; 22, 34 
and 46 metaphases. 2 to 5 experiments at each MF.  HEL, NCI-H460 and COL 320DM 
assays used 21 % oxygen, rather than anoxic conditions, as some anoxic karyotype modes 
are too close to 46 to allow easy statistical separation from MF-exposed samples. 
 
 

 

Fig. 4. LEFT: K562 chromosome numbers 
return to baseline after 3 weeks of 
continuous 1 µT MF exposure. 65, 102, 50 
and 37 metaphases. 2 experiments at each 
MF.   
 
TOP RIGHT: K562 Chromosome numbers 
obtained after 6 days by altering baseline 
MFs of 0.1 µT. 20, 31, 37 (baseline), 31, 35 
metaphases. 3 to 6 experiments at each MF.  
 
BOTTOM RIGHT: For 1 µT, 28, 28, 37 
(baseline), 28, and 28 metaphases. 3 
experiments at each MF. Although the 
symmetry of the chromosome numbers is 
strong, there is more cell decay with  
increased than with reduced fields.  
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Classical toxicology and epidemiology, where smoothly climbing dose-responses are justified by 

binding chemistry and the central tendency theorem, do not expect the flat dose-responses 

observed in Fig. 2 TOP and Fig. 3. The effects found for different cell types are strikingly  

similar, with similar low-field deviations in the two erythro-leukemia lines, suggesting common, 

basic mechanisms. 

Differential Action 

K562 cells with magnetic KCs such as in Fig. 2 TOP  progressively recover their original 

chromosome numbers after 3 weeks, even as the MF is maintained at a constant level (Fig. 4 

LEFT). Surprisingly, in cells recovering over 3 weeks from a MF disturbance, the deviation of 

chromosome numbers is even less than what is observed in the long-term baseline culture, as 

shown in the last measurement of Fig. 4 LEFT and in the central measurements of Figs. 4 

RIGHT TOP and BOTTOM. Chromosome numbers restore earlier than chromosome number 

dispersions. 

 

After 3 weeks, if the MF is altered by a small percentage of the original value, either positively 

or negatively, KCs are again observed, as shown in Fig. 4 RIGHT. Starting from low (TOP, 0.1 

µT) or high (BOTTOM, 1 µT) baselines, symmetrical KCs are observed. This bilateral 

sensitivity to changes is unforeseen by conventional toxicological principles. KC is also 

observed when fields are reduced from 50 to 4 nT (not shown). 

 

The KCs will be interpreted below as caused by magnetically-induced perturbations in intra-

cellular ATP levels. These results cast doubt on the stability of cancer cell models housed in 

incubators with MFs that are highly variable over space and time [22]. 

Over Frequency 

We measured in anoxic K562 6-day tests at 1 µT the average KCs over frequency as follows:  

-3.6 ±0.79 at 50-Hz , -9.36 ±1.06 at 60-Hz, -12.71 ±1.82 at 120-Hz and -9.8 ±1.31 at 155-Hz. A 

polynomial fit predicts maximum KC effect on ATPS at 113 Hz for 1 µT.  

Static Magnetic Field Removed  

The influence of the static MF was investigated by observing K562 cells transferred from a steel 

shield that eliminated ELF MFs (to less than 5 nT), but had a static field of 74 µT, to a second 

shield (‘NIM’) that attenuated both the ELF MF (less than 5 nT) and  the static field to 3 µT. 

Karyotyping revealed a very slow drift downward, but a strong effect on proliferation rate was 

observed. After 4 days, cell numbers in the NIM shield were increased  by a factor of 2.05 ± 0.13 
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(S.D.) over cells kept in the steel shield, indicating enhanced metabolism. The effect is persistent 

over time.  

Magnetic Field and Oligomycin 

Previous experiments [14] on the 5 cancer cell lines used in this article show a link between 

metabolic restriction and KC. Anoxia alone induces partial KCs of 6-8 chromosomes. Deeper 

contractions, almost to normalization of the karyotypes to 46, are produced by IC50 doses 

(allowing 50 % of the normal cell division rate) of the metabolic restrictors oligomycin and 

imatinib. Similar KCs are produced by physiological levels of melatonin and vitamin C together. 

We believed that comparison of metabolically restricted cultures with MF-exposed cultures 

could provide clues on action mechanisms, as the different metabolic restrictors mentioned 

above have different sites of action. Fig. 5 TOP, displays the similarity in cell size distribution 

after 6-days between two of seven anoxic K562 assays, one exposed to a very effective MF, 0.4 

µT at 60-Hz, and the second to oligomycin at IC50 (2.5 ng/ml). The two distributions stand 

apart, with smaller cell diameters and higher ratios of cells-to-objects below 11 µm, the decay 

particles and apobodies. This suggests that MFs and oligomycin share a common mode of action. 

Despite the closeness between oligomycin and MF assays in Fig. 5 TOP, oligomycin is faster-

acting than 0.4 µT: changes in cell size, revealing of KC, are visible at 1 day, earlier than for the 

MF. But more efficant MFs, such as 5 µT at 60-Hz or 1 µT at 120-Hz, show effects earlier (not 

shown). 

Magnetic Field and AMPK 

The similarity between 0.4 µT and oligomycin suggests that the MF may be an inhibitor of 

ATPS, as oligomycin is a highly specific inhibitor of ATPS. If this were the case, inhibition of 

mitochondrial ATPS by MFs would activate AMPK, because healthy cells must maintain a high 

level of phosphorylation capacity (ATP:ADP ≈ 10) to function well [23]. AMPK is a sensitive 

ATP regulator that switches on catabolic pathways and off many ATP-consuming processes, 

both acutely and chronically, through gene expression.  

 

The MF>ATPS>AMPK pathway was investigated using metformin and resistin. Metformin is a 

diabetes drug that activates AMPK, leading to reduced glucose production in the liver, and 

reduced insulin resistance in muscle. It is an attractive anti-aging drug that usually causes weight 

and appetite loss. 

Resistin, a product of the RSTN gene, is a 9.9 kDa protein containing 93 amino acid residues 

which, at 20 ng/ml or more, inhibits AMPK. It interferes with phosphorylation of Akt 

(serine/threonin protein kinase), active in multiple cellular processes such as glucose 

metabolism, cell proliferation, apoptosis, transcription and cell migration. 

http://en.wikipedia.org/wiki/Liver
http://en.wikipedia.org/wiki/Apoptosis
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Fig. 5. TOP: Object Diameter histograms for 6-day anoxic exposures of K562 cultures to 
0.4 µT MF at 60-Hz and oligomycin at IC50 (2.5 ng/ml). The lower 4 IC50 curves are, 
bottom to top at 15 µm: imatinib (0.04 µg/ml), resistin (40 ng/ml), metformin (0.01 mg/ml) 
and melatonin-vitamin C (0.3 µg/ml, 26 µg/ml ). All cultures are adjusted to a common 
small particle count maximum.   
 
BOTTOM: Object Diameter histograms for 7-hour 21 % oxygen exposures of three K562 
cultures under typical Incubator MF. Aliquots of RPMI-1640 with 10 % FBS medium 
exposed for 15 hours to Very Small MF (<4 nT at 60-Hz, 3 µT static), Incubator MF (2 to 
2.7 µT at 60-Hz) or Inhibitory MF (0.62 µT at 120 Hz) were seeded with cells at time 0, and 
measured with a Millipose Scepter at 7 hours. Average of 3 repeats for each condition, The 
p-value between average levels (12-16 µm) for Very Small MF and Inhibitory MF is 0.001 
(n=4). 
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Metformin (0.01 mg/l) and resistin (40 ng/l) alone for 3 days induce average KCs of 9 and 10 

respectively, in K562. When, in the 6-day trials routinely used for MF tests, 1 µT is added to 

metformin, even larger KCs are observed (9 becomes 11 ± 0.34). When 1 µT  is added to 

resistin, the KC of resistin reduces from 10 to 4 ± 0.46, also less than the KC of 1 µT alone, at 

7.5. The conclusion is that MFs enhance the action of metformin, but neutralize the effect of 

resistin, again suggesting a connection between MFs and ATPS. 

Experiments on Medium Alone 

Cells grown for 7 hours under identical Incubator MF (2 to 2.7 µT at 60-Hz) conditions fared 

differently according to whether the culture medium added at 0 hours originated from closed 

flasks exposed for 15 hours to: Very Small MF (<4 nT at 60-Hz, 3 µT static), Incubator MF (2 to 

2.7 µT at 60-Hz) or Inhibitory MF (0.62 µT at 120 Hz).  

After the sealed flasks with media (only) are exposed to their respective MFs, cell culture 

aliquots are introduced into each flask, and incubated for 7 hours under Incubator MF 

conditions. Measurements of cells numbers of each size are acquired at 0 hours, as well as at 7 

hours for each flask. There is an increase (Fig. 5 BOTTOM) in the number of living cells 

observed under the Very Small MF condition, compared to the Inhibitory MF condition, with the 

Incubator MF condition rating in between.  

When stressed cells from a culture with depleted medium (lower pH) were used, the Inhibitory 

MF had the effect of increasing the level of decay products (object diameters less than 11 µm) in 

the culture (not shown).  

The lasting effect of MFs on aqueous fluids is also observable from pH measurements in cell 

culture media, which turn slightly more acidic under short MF exposures. After 20 hours, there is 

a difference of -0.09 pH units with a 95 % confidence interval of 0.045 between unexposed vs  5 

µT 60-Hz exposed media (Fig. 2 BOTTOM) for the widely used RPMI-1640 with 10 % serum. 

The pH shift was confirmed for a variety of cell culture media. 

NCI-H460 Proliferation 

Beyond strong effects on cancer cells karyotypes, MFs also impact proliferation rate, adhesion 

and cell shape, which cannot be reported in detail here. Some prominent effects are strongly 

dependant on MF intensity. For example, the cell counts of lung cancer cells (NCI-H460) after 4 

days in our synthetic medium at 50 nT, 400 nT and 5 µT are 8, 9.2 and 14.8 times larger than 

those of unexposed cells. Unexposed NCI-H460 do not attach in our synthetic medium, but do so 

under any MF exposure. 

  



13 

 

Discussion  

Possible Biological Site of Action of Magnetic Fields 

The involvement of water structure disruptions is anticipated by recent views on EMF bioeffects 

[24; 25]. If the effect on water described by Semikhina and Kiselev is involved, it would be most 

prominent in a location where “high concentrations of hydrogen bonds and protons” are found. 

The only known location in the biota where these two conditions are met are the entry and exit 

water channels of ATPS. 

According to this mechanism, MFs would impede proton flow through the hydrophilic channels, 

and MF removal would improve proton flow, directly impacting ATPS efficiency. 

In this hypothesis, the dose-responses of Figs. 2 TOP and Fig. 3 are determined by rising proton 

impedance (decreased soliton tunneling) through ATPS half-channels. Tunnelling of protons 

similar to the one we hypothesize for ATPS has been observed as double wells in neutron 

Compton scattering studies performed on nanotubes [26].  

The involvement of protons relieves the area of EMF bioeffects of the “kT problem”, because 

EMF would act not on molecules, but on particles (protons and electrons), which, as fermions, 

do not follow Maxwell-Boltzmann statistics, but Fermi-Dirac statistics, and are governed by 

quantum electrodynamics. 

 

Numerous elements documented by Russian physicists in their studies of MFs on water [10; 11] 

are compatible with our own biological observations. 

It is particularly notable that the KC threshold of 25 nT in Fig. 2 TOP falls in line with the water 

effect threshold detected by Russian physicists [10]. The extended, flat response is also 

compatible with their observations. Further, the increased metabolism observed when alternating 

and static MFs are removed, and the ability of MF-conditioned culture media to influence 

cellular development are all compatible with Russian data. The presence of a KC resonance 

wider than that observed for pure water by Russian physicist adds support. Lastly, the ratio 

between frequency and field intensity (f/B) for maximum biological effects is suggestive of a 

coupling with the gyromagnetic ratio of the proton. 

 

In this context, similar fingerprints between the 0.4 µT and oligomycin (Fig.5 TOP), known to 

inhibit ATPS by binding to the  subunit of the Fo segment of ATPS (also named oligomycin 

sensitivity conferral protein), comes as no surprise. Another intriguing link between MFs and 

ATPS is provided by the fact that  rhodamine 6G, used by Semikhina to detect MF effects on 

water, also happens to inhibit the FO segment of ATPS. 

meet:are
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Karyotype Contraction, AMPK and Diabetes 

Perturbations of ATP concentrations trigger AMPK, which activates p53 and reduces both ATP 

consumption and DNA synthesis [27; 28]. The suppression of DNA synthesis, part of AMPK’s 

catabolic control,  leads to KCs through suppression of chromosome endo-reduplication, the 

mechanism probably responsible for rapid chromosome number increases in cancer cells [14]. 

 

Two unusual aspects of MF action, adaptation to a stable field over three weeks (Fig. 4 LEFT), 

and the unusual shorter-term sensitivity to small MF increases and decreases (Fig. 4 RIGHT) are 

compatible with AMPK physiology. As far as we know, this is the first example of an agent 

presenting this kind of symmetry, making it possible to sustain KCs indefinitely by judicious 

selection of MF sequences. AMPK is easily triggered by small changes in ATP levels [23], but 

also controls long-term dynamic adaptation in muscle [29]. The connection between  metabolic 

restrictors, including MFs, and KC may be be explainable by AMPK physiology. 

 

The MF>ATPS>AMPK pathway is easily detectable in cancer cells because of KC, but there is 

no reason to think that the ATPS of normal cells is spared under MF exposure. A major regulator 

of metabolism [30], AMPK modulates insulin secretion by pancreatic beta-cells [31], and is 

investigated for the treatment of diabetes [32].  AMPK is tied with body weight [33] as well as 

with immune cell behaviour [34].  

Karyotype Contractions and Cancer 

Cancer cells depend on glycolysis and significantly upregulate it when respiration is inhibited. 

The Warburg effect manifests as increased glycolysis and reduced mitochondrial respiration [35; 

36]. These capabilities of cancer cells allow growth under metabolic restriction by concentration 

of their resources on bio-synthesis through the elimination of detoxification mechanisms 

associated with oxygen exposure, such as glutathione-S-transferase and CYP3A4 expression 

[37]. The smaller karyotypes maintained under metabolic restriction contribute to tumour core 

expansion, as fewer chromosomes can be more rapidly duplicated. The survival of tumours could 

thus be enhanced by certain levels of chronic metabolic restrictions from hypoxia, oligomycin or 

MFs. It has been repeatedly confirmed that cancer cells become more malignant under metabolic 

restriction [13; 38; 39] in vitro [40] and in the clinic [41; 42], to the point where it has become a 

central issue in tumour physiology and treatment [38]. From our data,  it is logical to conclude 

that KC observed under metabolic restriction is a possible indicator of meta-genetic promotion in 

cancer cells [14]. 
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Magnetic Fields and Cancer Epidemiology 

For many cancer cell types, the dose-response of KC vs MFs is remarkably flat (Fig. 3). The 

deviation from flatness in erythro-leukemia cells (Fig. 2 TOP and Fig. 3, HEL) is due, we 

suspect, to extra-mitochondrial ATP secretion in the cell membrane [43], where pH is at a 

physiological 7.3 rather than 1, a probable feature of this cell type [44]. 

If KC is indeed a marker of increased malignancy, there is a possibility of carcinogenicity from 

MF exposures. In such a case, the phenomenon would not be easy to document through 

epidemiology. First, the threshold for the effect  (25 nT) is very low, which means that all the 

population is “exposed”. Second, the dose-response is unusually flat (Fig. 3), such that useful 

low and high exposure groups with otherwise similar characteristics would be difficult to 

assemble. Third, the differential action of MFs may confuse conventional exposure analysis.  

Occupational studies are often at the forefront of epidemiological discovery because of their 

higher and better documented exposures. According to Fig. 2 TOP, occupational populations of 

low (0.1 µT) and high exposures (1 µT) have between them a KC difference of “1 chromosome”. 

Domestic MF epidemiology on leukemia may have been successful [3; 45] because it benefited 

from a KC of “10 chromosomes” between 0 and 0.4 µT (Fig. 2 TOP).  

The increased proliferation rates reported for lung cancer cultures may also be important. Lung 

cancer was pointed in at least four studies related to EMFs [46-48]. 

 

Methods 

Cells and Culture Conditions 

The cell lines, K562 and HEL 92.1.7 (erythro-leukemias), MCF7 (breast cancer), NCI-H460 

(lung cancer) and COLO320DM (colon cancer) were obtained from ATCC. Cells are maintained 

under 5 % carbon dioxide and 90 % humidity, and grown in synthetic culture medium, because 

changes in serum can alter chromosome counts. The medium is RPMI-1640 with l-glutamine 

(Sigma 61-030-RM), sodium selenite 20 nM (Sigma S-5261), bovine insulin 1 mg/l (Sigma 

I5500), iron saturated bovine transferrin 25 mg/l (Sigma T1408), sodium bicarbonate 2 g/l 

(Sigma S-6014) and bovine serum albumin 4 g/l (Sigma A3311).  Vented T-25s (Sarstedt 

83.1810.502) and T-12s (Falcon 353018) were used for experiments, and cells are seeded at 

5000/cm², and kept in the same medium for 6 days. In longer tests (3 weeks), new medium is 

added weekly. Oxygen was eliminated by enclosing T-25s and T-12s in large polycarbonate 

containers (1.6 L ) flushed with medical grade nitrogen (95%) and CO2 (5%). pH readings were 

conducted under isothermal conditions (water bath) for samples as well as calibration buffers, 

using Corning 445 meters. 
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Magnetic Fields 

Unexposed cells for experiments are kept in T-12 or T-25 culture flasks under anoxia and MFs 

below 4 nT. Three 6.3 mm thick layers of structural steel reduce ELF MFs from incubators and 

the environment. Culture vessels are centered in a rectangular structural steel pipe 5.1 x 7.6 cm, 

itself contained in a 7.6 x 10.2 mm pipe, both 20 cm long. These two shields are placed in a 15.2 

x 24.5 x 36 cm long pipe. This reduces 60-Hz MFs by a factor of 144, providing unexposed cells 

with a MF environment of 3 nT, slightly below the measurement floor (5 nT at 60-Hz) of our 

Narda EFA-300 instrument. The incubator is a Forma 3310, with low average MF (0.4 µT).   

MFs are applied by rectangular coils (19 x 25.6 cm) with 20 to 50 turns of  #25 AWG varnished 

copper wire wound on 13 mm polycarbonate, providing ≈ 8 Ω. The coil is under the two inner 

shields and over an acrylic spacer at the bottom of the outer shield. 60-Hz fields above 0.4 µT 

are from sector-connected variable transformers fitted with a passive low-pass capacitive filters, 

with all harmonics at less than – 20 dB. Smaller 60-Hz fields and other frequencies were 

generated with computer-based synthesizers with a background noise at less than – 40 dB. MFs 

are within 10 % of nominal in the whole cell culture area. 

The “NIM” shield cancelling both alternating and static MFs is an acrylic cylinder 5.7 cm in 

internal diameter with a 0.38 cm wall and 38 cm in length, covered by 6 layers of 0.4 mm 

Nickel-Iron-Molybdenum foil (ASTM  A753 Type 4) wound in a spiral, together with a 1.6 mm 

neoprene membrane spacer. 

60-Hz 5 µT exposures produce no measurable temperature rises. K562 is a good thermal 

sentinel, hyperthermia being detectable from larger cell sizes at +0.5 K, while +1 K seriously 

impairs proliferation, and +2 K over a few days is lethal. 

Chromosome,  Cell and AMPK assays 

Metaphase preparation and cytogenetic analysis were performed according to the standard 

trypsin-Giemsa banding technique. Karyotypes are obtained using ×100 oil immersion, a 

Laborlux D (Leitz) microscope, and an Infinity X (21 Mpixels) CMOS camera (Lumenera). 

Cell proliferation and cell size histograms of are from a Scepter Automated Cell Counter 

(Millipore). Metformin was obtained from Sigma (D150959), and resistin from Prospec Protein 

Specialists, East Brunswick, New Jersey, USA. 
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Conclusion 

 

The following evidence supports  inhibition of ATPS by MFs.  

 

MFs alter Metabolism 

1. MFs induce KCs in 5 cancer cell lines, as do other metabolic restrictors [14]. 

2. MFs interact with metformin and resistin as would an  AMPK activator.  

3. Elimination of alternating and static MFs produces a durable increase in cell 

proliferation. 

 

MFs alter Water 

4. The KC threshold (25 nT), as well as its extent two orders of magnitude, is predicted by 

the work of Russian physicists on water [11]. Lack of sensitivity to MF intensity or to cell 

type suggest the knockout of a biological enzyme by physics.  

5. MF-exposed culture medium, without cells, is a vector of MF action (proliferation and 

cell decay). 

6. Measured changes in the pH of cell culture media from MF exposures. 

7. A wide KC resonance (113 Hz at 1 µT) is compatible with the work of Russian physicists 

on water [12]. 

8. KC is maximized at specific frequency-amplitude (f/B) combinations [12].  

 

MFs alter ATPS Fo  

9. ATPS Fo is the only site in the biota where conditions for maximum sensitivity to MF 

action [22] happen together: high concentrations of protons and hydrophilic bonds in a 

narrow channel.  

10. Strongly acting MFs induce cell culture characteristics (Fig. 5 TOP), closely matching 

those of a specific ATPS Fo inhibitor, oligomycin. 

11. MF activation of AMPK implies a perturbation to ATP levels, thus a change in ATPS 

performance.  

12. Rhodamine 6G, used by Russian physicists [11] to detect MF effects, is also an inhibitor 

of ATPS Fo. 

 

Environmental MFs act on the core of human metabolism. Past evaluations of MF bio-effects 

were at a serious disadvantage because of traditional toxicological and epidemiological 

assumptions, that larger exposures induce larger responses. The controls of in vitro scientists 

were already randomly exposed by the MFs of their incubators. The flatness of MFs’ dose-
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response impaired epidemiological work, as most studies, except for domestic leukemia, used 

tainted controls [49]. The interaction between power-frequency MFs and living cells may have 

been underestimated for a long time, because of these unexpected characteristics.  

 

Some diseases appear to have strengthened, with no clear causation, as more advanced 

technology, in great part based on electricity, has expanded. Chronic diseases that increased or 

decreased in the last century, and that are connected to ATP metabolism, should be examined for 

a link with MFs. But our understanding of AMPK and metabolism is incomplete [50], making a 

link between MFs and any specific disease, such as diabetes, uncertain. MF is a physiological 

agonist of metformin, suggesting that MF exposure may have played a role in the increased 

lifespan observed in developed countries in the last century. 

 

Acknowledgements 

To the late Nancy Wertheimer and Edward Leeper, who saw it first. To Semikhina and Kiselev, 

whose work made our analysis possible. We are grateful to Janet Moir and Lorne Beckman of 

the Royal Victoria Hospital for laboratory support, and Michel Bourdages, Institut de Recherche 

d’Hydro-Québec, for equipment contributions. We thank Louis Slesin for reviewing the 

document. The work was supported by Royal Victoria Hospital Research Institute Fund 65891. 

We declare no competing financial interests. 

 

References  
1. Wertheimer N, Leeper E (1979) Electrical Wiring Configurations and Childhood Cancer. Am J 

Epidemiol 109:273-284. 
2. Héroux P (1991) A Dosimeter for Assessment of Exposures to ELF Fields. BioElectroMagnetics,  

12(4):241-257. 
3.  Ahlbom A, Day N, Feychting M, Roman E, Skinner J et al. (2000) A pooled analysis of 

magnetic fields and childhood leukaemia. British Journal of Cancer 83:692–698. 
4. International Agency for Research on Cancer  (2002) IARC Monographs on the Evaluation of 

Carcinogenic Risks to Humans. Volume 80, Non-ionizing Radiation, Part 1: Static and Extremely 
Low-Frequency (ELF) Electric and Magnetic fields. IARC Press, Lyon, France.  

5. Ishido M, Nitta H, Kabuto, M (2001) Magnetic fields of 50-Hz at 1.2 µT as well as 100 µT cause 
uncoupling of inhibitory pathways of adenylyl cyclase mediated by melatonin 1a receptor in MF-
sensitive MCF-7 cells. Carcinogenesis 22:1043-1048. 

6. Goodman EM, Greenebaum B, Marron MT (1979) Bioeffects of Extremely Low-Frequency 
Electromagnetic Fields: Variation with Intensity, Waveform, and Individual or Combined 
Electric and Magnetic Fields. Radiat Res 78:485-501. 

7. Phillips JL, Winters WD, Rutledge L (1986) In vitro exposure to electromagnetic fields: changes 
in tumour cell properties. Int J Radiat Bio 49:463-9. 

8. Chen G, Upham BL, Sun W, Chang CC, Rothwell EJ et al. (2000) Effect of EMF exposure on 
chemically induced differentiation of Friend erythroleukemia cells. Env Health Persp 108:967-
972. 

9. Lai H, Singh NP (2004) Magnetic-Field–Induced DNA Strand Breaks in Brain Cells of the Rat. 
Environmental Health Perspectives 112:687-694. 



19 

 

10.  Semikhina LP, Kiselev VF, Levshin LV, Saletskii AM (1988) Effect of weak magnetic fields on 
the luminescence-spectral properties of a dye in an aqueous solution. Journal of Applied 
Spectroscopy 48:556-9. 

11. Semikhina, LP, Kiselev VF (1981) Effect of weak magnetic fields on the properties of water and 
ice. Russian Physics Journal 31:5351-54. 

12. Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M (2003) Tumor hypoxia: A target for selective 
cancer therapy. Cancer Sci. 94:1021–28. 

13. Hill RP, Marie-Egyptienne DT, Hedley DW (2009) Cancer Stem Cells, Hypoxia and Metastasis. 
Semin Radiat Oncol 19:106-111. 

14. Li Y, Héroux P,  Kyrychenko I (2012) Metabolic Restriction of Cancer Cells in vitro causes 
Karyotype Contraction - an indicator of Cancer Promotion?  Tumor Biology 33(1):195-205. doi: 
10.1007/s13277-011-0262-6. 

15. Boyer PD (2002) A Research Journey with ATP Synthase. Journal of Biological Chemistry 
277:39045–39061. 

16. Procopio J, Fornés JA (1997) Fluctuations of the proton-electromotive force across the inner 
mitochondrial membrane. Physical Review 55:6285-88. 

17. Sasada R,.Marcey D. ATP Synthase. 2010. 
http://www.callutheran.edu/BioDev/omm/jmol/atp_synthase/atp_synthase.html#fig1 

18. Fillingame RH, Angevine CM, Dmitriev OY (2003) Mechanics of coupling proton movements 
to c-ring rotation in ATP synthase. FEBS 27735 FEBS Letters 555:29-34. 

19. Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Regulation and 
pharmacology of the mitochondrial permeability transition pore. Cardiovascular research 83:213-
225. 

20. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. 
Biological Reviews 41:445-501. 

21. Héroux P (1987) 60 Hz Electric and Magnetic Fields Generated by a Distribution Network. 
BioElectroMagnetics  8:135-148. 

22. Mild KH, Wilén, J, Mattsson, MO, Simko M (2009) Background ELF magnetic fields in 
incubators: A factor of importance in cell culture work. Cell Biology International 33:755-757. 

23. Hardie DG, Hawley SA (2001) AMP-activated protein kinase: the energy charge hypothesis 
revisited. BioEssays 23:1112–1119. 

24. Novikov VV, Ponomarev VO, Novikov GV, Kuvichkin VV, Yablokova EV and Fesenko EE. 
Effects and Molecular Mechanisms of the Biological Action of Weak and Extremely Weak 
Magnetic Fields. Biophysics, 2010, Vol. 55, No. 4, pp. 565–572.  

25. De Ninno A and Castellano AC. On the Effect of Weak Magnetic Field on Solutions of Glutamic 
Acid: the Function of Water. Journal of Physics: Conference Series 329 (2011) 012025 
doi:10.1088/1742-6596/329/1/012025. 

26. Reiter GF, Kolesnikov AI, Paddison SJ, Platzman PM, Moravsky AP et al. (2011) Evidence of a 
new quantum state of nano-confined water. arXiv:1101.4994v1. 

27. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J et al. (2005)  AMP-Activated Protein Kinase 
Induces a p53-Dependent Metabolic Checkpoint. Molecular Cell 18:283–293. 

28. Motoshima H, Goldstein BJ, Igata M, Araki E (2006) AMPK and cell proliferation – AMPK as a 
therapeutic target for atherosclerosis and cancer. J Physiol 574:63–71. 

29. Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO (2000) Activation of 
AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl 
Physiol 88:2219-26. 

30. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC (2006) Hypoxia-Induced Energy 
Stress Regulates mRNA Translation and Cell Growth. Molecular Cell 21:521–531. 

31. Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: 
possible roles in Type 2 diabetes. Am J Physiol Endocrinol Metab 277: E1-E10. 

32. Viollet B, Lantier L, Devin-Leclerc J, Hebrard S, Amouyal C et al. (2009) Targeting the AMPK 
pathway for the treatment of Type 2 diabetes. Frontiers in Bioscience 14:3380-00. 

33. Kim EK, Miller I, Aja S, Landree LE, Pinn M et al. (2004) C75, a Fatty Acid Synthase Inhibitor, 
Reduces Food Intake via Hypothalamic AMP-activated Protein Kinase. Journal of Biological 
Chemistry  279:19970–76. 

34. Kanellis J, Kandane RK , Etemadmoghadam D, Fraser SA , Mount PF et al. (2006) Activators of 
the energy sensing kinase AMPK inhibit random cell movement and chemotaxis in U937 cells. 
Immunology and Cell Biology 84:6–12. 

http://www.springerlink.com/content/?Author=L.+P.+Semikhina
http://www.springerlink.com/content/?Author=V.+F.+Kiselev
http://www.springerlink.com/content/1064-8887/


20 

 

35. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J et al. (2006)  Multiparameter metabolic 
analysis reveals a close link between attenuated mitochondrial bioenergetic function and 
enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292:C125–
C136. 

36. Jezek P, Plecitá-Hlavatá L, Smolková K, Rossignol R (2010) Distinctions and similarities of cell 
bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. The 
International Journal of Biochemistry & Cell Biology 42:604–622. 

37. Nagai F, Kato E, Tamura H (2004) Oxidative stress induces GSTP1 and  CYP3A4  expression  in  
the  human  erythroleukemia  cell line,  K562.  Biol  Pharm  Bull.  27:492 – 5.  doi:10.1248/ 
bpb.27.492. 

38. Höckel M, Vaupel P (2001) Tumour Hypoxia: Definitions and Current Clinical, Biologic, and 
Molecular Aspects. Journal of the National Cancer Institute 93:266-276. 

39. Jögi A, Øra I, Nilsson H, Poellinger L, Axelson H, Påhlman S (2003) Hypoxia-induced 
dedifferentiation in neuroblastoma cells. Cancer Letters 197:145–150. 

40. Anderson GR, Stoler DL, Scarcello LA (1989) Normal Fibroblasts Responding to Anoxia 
Exhibit Features of the Malignant Phenotype. Journal of Biological Chemistry 264:14885-14892. 

41. Brizel DM, Scully SP, Harrelson JM, Layfleld LJ, Bean JM et al. (1996) Tumour Oxygenation 
Predicts for the Likelihood of Distant Metastases in Human Soft Tissue Sarcoma. Cancer 
Research 56:941-943. 

42. Nordsmark M, Hoyer M, Keller J, Nielsen OS, Jensen OM, Overgaard J (1996) The Relationship 
between Tumour Oxygenation and Cell Proliferation in Human Soft Tissue Sarcomas. Int J 
Radiation Oncology Biol Phys 35:701-8. 

43. Arakaki N, Nagao T, Niki R, Toyofuku A, Tanaka H, Kuramoto Y et al. (2003)  Possible Role of 
Cell Surface H+-ATP Synthase in the Extracellular ATP Synthesis and Proliferation of Human 
Umbilical Vein Endothelial Cells. Molecular Cancer Research 1:931–939. 

44. Das B, Mondragon MOH, Sadeghian M, Hatcher VB, Norin AJ (1994) A  Novel  Ligand  in  
Lymphocyte-mediated Cytotoxicity:  Expression  of  the/3  Subunit  of  H + Transporting ATP 
Synthase on the Surface of  Tumor Cell Lines. J Exp Med 180:273-281. 

45. Svendsen AL, Weihkopf T, Kaatsch P, Schüz J (2007) Exposure to magnetic fields and survival 
after diagnosis of childhood leukemia: a german cohort study. Cancer Epidemiol Biomarkers 
Prev. 6:1167-71. 

46. Vagero D, Olin R (1983) Incidence of  cancer in the electronics industry: using the new Swedish 
Cancer Environment Registry as  a screening instrument. British Journal of Industrial Medicine 
40:188-192. 

47. Armstrong B, Thériault G, Guénel P, Deadman J, Goldberg M, Héroux P (1994) Association 
between Exposure to Pulsed Electromagnetic Fields and Cancer in Electric Utility Workers in 
Quebec, Canada, and France. American Journal of Epidermiology 140:805-820. 

48. Miller AB, Teresa T,  Agnew DA, Wall C,  Green LM (1996) Leukemia  following  Occupational  
Exposure to 60-Hz  Electric  and  Magnetic Fields among  Ontario  Electric  Utility  Workers. 
American Journal of Epidemiology 144:150-160. 

49. Milham, S (2010) Historical evidence that electrification caused the 20th century epidemic of 
‘‘diseases of civilization”. Medical Hypotheses 74:337–345. 

50. Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer 
growth. Genes  and Development 23:537–548. 


